Details

Plasticity in the Visual System


Plasticity in the Visual System

From Genes to Circuits

von: Raphael Pinaud, Liisa A. Tremere, Peter de Weerd

149,79 €

Verlag: Springer
Format: PDF
Veröffentl.: 04.04.2006
ISBN/EAN: 9780387281902
Sprache: englisch
Anzahl Seiten: 364

Dieses eBook enthält ein Wasserzeichen.

Beschreibungen

<P>Mechanisms of neural plasticity enable the encoding and memorization of information based on sensory inputs and can be harnessed to partially restore function after CNS assault such as stroke or head trauma. In the present book, experts from the field of visual system plasticity describe and evaluate the evidence for neural mechanisms proposed to underlie CNS plasticity in the major divisions of the brain dedicated to visual processing, the retina, sub-cortical structures and cortex. We present studies from a wide variety of disciplines that range from molecular biology to neurophysiology and computer modeling. Leading investigators discuss their own work, and integrate this research with colleagues from other specializations. The book points out future applications for this research including clinical uses and engineering within the biomedical sciences. This book is an exciting and thought provoking read for all levels of science enthusiast interested in the physical basis of learning and cognition.</P>
<P>Mechanisms of neural plasticity enable the encoding and memorization of information based on sensory inputs and can be harnessed to partially restore function after CNS assault such as stroke or head trauma. In the present book, experts from the field of visual system plasticity describe and evaluate the evidence for neural mechanisms proposed to underlie CNS plasticity in the major divisions of the brain dedicated to visual processing, the retina, sub-cortical structures and cortex. We present studies from a wide variety of disciplines that range from molecular biology to neurophysiology and computer modeling. Leading investigators discuss their own work, and integrate this research with colleagues from other specializations. The book points out future applications for this research including clinical uses and engineering within the biomedical sciences. This book is an exciting and thought provoking read for all levels of science enthusiast interested in the physical basis of learning and cognition.</P>
Introduction: Plasticity in the Visual System: From Genes to Circuits.- Part I Retinal and Thalamic Plasticity: Synaptic Plasticity and Structural Remodeling of Rod and Cone Cells.- Retinal Remodeling: Circuitry Revisions Triggered by Photoreceptor Degeneration.- Retinal Plasticity and Interactive Cellular Remodeling in Retinal Detachment and Reattachment.- Experience-Dependent Retinal Circuit Rewiring: Involvement of Immediate Early Genes.- Attentional Activation of Cortico-Thalamic Pathways Revealed by Fos Imaging.- Part II Cortical Plasticity: Neuromodulatory Transmitters in Sensory Processing and Plasticity in the Primary Visual Cortex.- Critical Calcium-Regulated Biochemical and Gene Expression Programs in Experience-Dependent Plasticity.- The Molecular Biology of Sensory Map Plasticity in Adult Mammals. Plasticity of Retinotopic Maps in Visual Cortex of Cats and Monkeys After Lesions of the Retinas or Primary Visual Cortex.- Intra-Cortical Inhibition in the Regulation of Receptive Field Properties and Neural Plasticity in the Primary Visual Cortex.- Plasticity in V1 Induced by Perceptual Learning.- Investigating Higher Order Cognitive Functions in the Dorsal (Magnocellular) Stream of Visual Processing.- Dopamine-Dependent Associative Learning of Workload Predicting Cues in the Temporal Lobe of the Monkey.- Part III Theoretical Considerations: Linking Visual Development and Learning to Information Processing: Pre-attentive and Attentive Brain Dynamics.- Conclusion: A Unified Theoretical Framework for Plasticity in Visual Circuitry.
<P>Plasticity is the basis for learning, memory formation and cognition, and the adaptability it affords is essential for normal day-to-day functioning. Many diseases of brain functioning can be described as, or affect, plasticity mechanisms. The goal of Plasticity in the Visual System: From Genes to Circuits is to assemble and integrate the various levels of analysis required to approach a more complete picture of plasticity in the visual system. Researchers with backgrounds varying from systems neuroscience to molecular biology present a coherent picture of visual system plasticity, in which an array of genetic and molecular processes becomes linked with changes in neuronal connectivity, physiological changes, and ultimately, learning behavior. Because of its interdisciplinary view on plasticity, this book will appeal to the wide neuroscience community. </P>
<P>Plasticity in the Visual System: From Genes to Circuits will advance discussion in a wide range of fields, including molecular, cellular and systems neuroscience, perceptual psychology, computational modeling and will be of use in graduate level courses and seminars in these areas.</P>
<p>Discusses retinal plasticity; directly addresses the role of immediate early genes as the first genetic outlet in the cell's plastic response; and addresses dynamic plasticity in higher order visual areas and relates them to the brain mechanisms that underlie complex behaviors</p><p>Couples together findings from molecular biology, genetics, electrophysiology as well as human psychophysics</p><p>Includes supplementary material: sn.pub/extras</p>

Diese Produkte könnten Sie auch interessieren:

Neural Engineering
Neural Engineering
von: Bin He
PDF ebook
109,99 €
Glutamate Receptors in Peripheral Tissue
Glutamate Receptors in Peripheral Tissue
von: Santokh Gill, Olga Pulido
PDF ebook
213,99 €
Neural Cell Behavior and Fuzzy Logic
Neural Cell Behavior and Fuzzy Logic
von: Uziel Sandler, Lev Tsitolovsky
PDF ebook
149,79 €